Ozone, water vapor, and temperature in the upper tropical troposphere: Variations over a decade of MOZAIC measurements
نویسندگان
چکیده
[1] The MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-service Aircraft) program (Marenco et al., 1998) has archived in situ measurements of temperature, water vapor, and ozone from August 1994 to December 2003. We analyze the trends, seasonality, and interannual variability of these quantities at aircraft cruise levels (7.7–11.3 km) within the tropics (20 S–20 N). Mean lapse rates for temperature and log(water vapor) are nearly identical in both tropics. The root-mean-square variance in temperature over cruise levels, seasons, and years is small, 1 C. The seasonal range in water vapor, a factor of 2.5, is much larger than expected from the seasonal range in temperature (1.7 C) if the two scale with the lapse rate relation or the Clausius-Clapeyron equation. The mean ozone abundance in the region sampled is 45 ppb in the north tropics and 50 ppb in the south tropics. This 112-month period shows a clearly linear increase in ozone over the north tropics with a trend fit of 1.12 ± 0.05 ppb/yr. In the south tropics, which has a large seasonal range of over 25 ppb, the trend is less obvious but still robust, 1.03 ± 0.08 ppb/yr. These trends in the upper troposphere are twice as large as reported for surface ozone over the tropical Atlantic (Lelieveld et al., 2004), but this pattern of ozone increases is consistent with projected increases driven by industrial emissions.
منابع مشابه
Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection
Ten years (1994–2004) of measurements of tropical upper-tropospheric water vapor (UTWV) by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) are investigated over three regions—the tropical Atlantic, tropical Africa, and the Asian monsoon region—to determine the UTWV climatology and variability on multiple scales and to understand them in relation to moisture trans...
متن کاملTemperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone
[1] Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosp...
متن کاملTen Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part II: Assessing the ECMWF Humidity Analysis
In a recent publication (Part I), the authors introduced a data source—Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)—for monitoring and studying upper-tropospheric water vapor (UTWV) and analyzed 10 yr (1994–2004) of MOZAIC measurements of tropical UTWV in its climatology, variability, transport, and relation to deep convection. In this study (Part II), MOZAIC is u...
متن کاملObservation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer
We report observations from space using ultraviolet (UV) radiance for significant enhancement of ozone in the lower troposphere over central and eastern China (CEC). The recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite revealed the spatial and temporal variation of ozone distributions in multiple layers in the troposphere...
متن کاملRemote sensed and in situ constraints on processes affecting tropical tropospheric ozone
We use a global chemical transport model (GEOSChem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006